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A short history of model theory

18.1 ‘A new branch of metamathematics’
In 1954, Alfred Tarski wrote:

Within the last years a new branch of metamathematics has been developing. It is called
the theory of models and can be regarded as a part of the semantics of formalized theories.
The problems studied in the theory of models concern mutual relations between sen-
tences of formalized theories and mathematical systems in which these sentences hold.1

In these words Tarski defined and named a new branch of mathematics, which to-
day we know as mathematical model theory, or simply as model theory. The present
essay will trace some of themain themes in the history of mathematical model the-
ory, roughly up to the beginning of the twenty-first century. (What would non-
mathematical model theory be? One example—there are others—is the ‘model-
theoretic syntax’ developedby the linguists PullumandScholz;2 it has historic links
with mathematical model theory.)

Although Tarski named the new subject, he certainly didn’t own it. Already be-
fore 1954 Anatoliĭ Mal’tsev and Abraham Robinson had published results that be-
came as characteristic of the subject as any of Tarski’s own contributions to it; we
will come to their work below. Tarski’s main role—apart from collecting a stellar
group of young researchers around him in Berkeley and giving them problems to
work on—had been to take up some earlier questions from the heuristic fringes of
mathematics, and show how to give them mathematical precision.

Tarski refers to ‘mathematical systems’. He means what we now usually call struc-
tures—they have a domain of elements, and a collection of relations, functions,
and distinguished elements defined in this domain and named by specified rela-
tion symbols, function symbols and individual constants. Structures in this sense
are an invention of the second half of the nineteenth century—for example David
Hilbert handled them freely in his Grundlagen der Geometrie.3 A system is a collec-
tion of things brought together in an orderly way. For Hilbert and his German pre-
decessors, it seems that the things brought together were the elements of the struc-
ture. Thus, Richard Dedekind used the name ‘System’ both for structures and for

1 Tarski (1954: 572). 2 Pullum and Scholz (2001). 3 Hilbert (1899).
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sets—apparently he thought of a structure as a set that comeswith added features.4

Heinrich Weber and Hilbert spoke of ‘Systeme von Dingen’ [systems of things], to
distinguish from axiom systems. On the other hand George Boole,5 adapting the
language of George Peacock,6 had spoken of a ‘system of interpretation’; for Boole,
the things brought together were the operations as interpretations of symbols, for
example + and × as function symbols and 0 as individual constant. Logicians re-
garded the interpretation of symbols by relations etc. of the structure as central,
so one finds structures being referred to as ‘interpretations’ well into the twentieth
century.

Inmodel theory the name ‘system’ persisted until it was replaced by ‘structure’ in
the late 1950s, it seems under the influence of Robinson and Bourbaki.7

Tarski speaks of ‘sentences’. Mostly these were taken as concatenated strings of for-
mal symbols. But already in the 1930s, Kurt Gödel was handling languages of un-
countable cardinality, with arbitrary objects as symbols, using any suitable func-
tions to replace concatenation of symbols.8 Mal’tsev did likewise.9 By the 1950s it
was taken for granted that a ‘sentence’ could be a purely set-theoretic object.

Tarski also refers to the notion of a sentence ‘holding in’ a structure. The notion
of a statement ‘holding in’ some contexts and not others is not a particularly math-
ematical one; for example a legal journal of 1900 speaks of ‘contravening the rule
held in the above cases’. It was one of a number of idioms that mathematicians had
used to expresswhatwenowmeanby saying that a structure is amodel of, or satisfies,
a formal sentence. Alessandro Padoa spoke of a structure ‘verifying’ axioms.10 The
word ‘satisfy’ in this context may be due to Edward V. Huntington;11 Huntington
was amember of the group of Americanmathematicians around EliakimH.Moore
andOswald Veblen who, in the early twentieth century, made a systematic study of
axiomatically defined classes of structures.12 We can trace back the use of the word
‘model’ itself to the seventeenth century geometers who spoke of gypsum or paper
‘models’ of geometrical axioms. The term ‘model’ for abstract structures appeared
during the 1920s in writings of the Hilbert school.13

18.2 Replacing the old metamathematics
One feature of the early work on models of axioms was the looseness of some of
the formulations. Three examples follow. In each of them an informal method was
in use around 1900, then Tarski attempted a non-model-theoretic formalisation in

4 Dirichlet and Dedekind (1871) and Dedekind (1872). 5 Boole (1847: 3). 6 Peacock
(1833). 7 A. Robinson (1952) and Bourbaki (1951). 8 Gödel (1932). 9 Mal’tsev (1936).

10 Padoa (1900). 11 For example in Huntington (1902). 12 Scanlan (2003). 13 von
Neumann (1925) and Fraenkel (1928: 342). R. Müller (2009) gives historical information on the use of the
word ‘model’ in model theory and elsewhere.
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the 1930s, and finally in the 1950s a model-theoretic formalisation was given which
is now widely regarded as canonical.

Categoricity

Veblen introduced the notion of categoricity:

[…] a system of axioms is categorical if it is sufficient for the complete determination of a
class of objects or elements.14

to which he added a brief informal explanation of isomorphisms. [See §7.2 footnote
3.] Veblen’s word ‘sufficient’ harks back toHuntington’s paper,15 where a set of pos-
tulates (i.e. axioms) is said to be ‘sufficient’ if ‘there is essentially only one’ structure
that satisfies the postulates. In 1935, Tarski attempted to tidy up the notion of cate-
goricity as follows.16 First he assumed that the system of axioms is finite, so that its
conjunction can be written as a single formula of an appropriate higher-order logic

α(x, y, z,…)
where the variables ‘x’ etc. represent the non-logical notions in the axioms (for ex-
ample ‘point’, ‘line’). Then he wrote

R
(x′ , y′ , z′ ,…)
(x′′, y′′, z′′,…)

for the formal statement thatR is a permutationof theuniverseof individuals, which
takes x′ to x′′, y′ to y′′ etc. Finally he defined the axiom system α(x, y, z,…) to be
categorical if the higher-order statement

∀x′∀y′∀z′…∀x′′∀y′′∀z′′…
(α(x′, y′, z′,…) ∧ α(x′′, y′′, z′′,…)→ ∃RR

(x′ , y′ , z′ ,…)
(x′′, y′′, z′′,…) )

is ‘logically provable’. Note that at this date, Tarski’s notion of ‘categorical’ made no
use of the notion of an axiom ‘holding in’ a structure. In short, it was not model-
theoretic. Nor was it objective, since the notion of ‘logically provable’ in higher-
order logic depends on what axioms you accept for this logic.

By the early 1950s, all the definitions were in place to allow the definition that a
theory T is categorical if and only if T has exactly one model up to isomorphism.
[See §7.2.] But by the 1950s the preferred logical language had become first-order
logic, and the Upward Löwenheim–Skolem Theorem implied that no first-order
theory with infinite models is categorical. Accordingly Vaught defined a theory T

14 Veblen (1904: 347). 15 Huntington (1902). 16 Tarski (1935a).
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to be λ-categorical (for a cardinal λ) ifT has, up to isomorphism, exactly onemodel
of cardinality λ.17 [See §17.3.] (The cardinality of a structure is that of its domain of
elements.) We will see below how this became one of the most fertile definitions
in model theory.

Padoa’s method

Padoa proposed a criterion for showing that in the context of an axiomatic theory
T, no formal definition of a notion A in terms of notions B1,…,Bn can be deduced
from the axioms T.18 The criterion was that there exist two interpretations of T
which agree in how they interpret B1,…,Bn but disagree in the interpretation ofA.
Padoa sketched proofs of the necessity and sufficiency of this criterion. But today
it is obvious that he couldn’t hope to prove necessity without saying more about
how he understood ‘deducible from T’; and in fact his proof of necessity is just a
blurred repetition of his proof of sufficiency. Today ‘Padoa’s method’ is generally
taken to consist of a model-theoretic criterion for a syntactic notion. But Tarski’s
reformulation of Padoa’s proposal removed all model-theoretic notions and trans-
lated Padoa’s proposal into pure syntax.19

Padoa’s method had a bumpy ride into the new context of model theory. In 1953,
Evert Beth proved that Padoa’s claim was true at least for first-order logic.20 Beth
took Padoa’s criterion model-theoretically. But since at this date there was no clear
model-theoretic route from the absence of a definition to the truth of the criterion,
Beth translated the criterion into proof theory along Tarski’s lines but within first-
order logic, and then used his own adaptation of Gentzen’s cut-free proofs to build
the required models. Tarski, through his student Solomon Feferman,21 responded
that, since Beth’s Theorem was proof-theoretic, it would be best to play down the
model-theoretic form of the criterion, which was only incidental to themain result.
Soon afterwards another member of the Berkeley group, William Craig, reworked
Beth’s use of cut-free proofs, and thereby discovered the Craig Interpolation The-
orem.22 Almost at once it came to notice that Abraham Robinson in Toronto had
already proved a model-theoretic result equivalent to the Interpolation Theorem,
using purely model-theoretic methods.23 From this point onwards it was accepted
thatmodel theory andproof theory could each feed useful information to the other.
In particular, Fefermanproved a number ofmodel-theoretic results by giving proof-
theoretic demonstrations of a range of interpolation theorems.24

17 Vaught (1954). 18 Padoa (1900). 19 Tarski (1935a). 20 Beth (1953). 21 van Ulsen
(2000: 138). 22 Craig (1957a,b). 23 A. Robinson (1956a). 24 For example in Feferman
(1974).
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Proofs of logical independence

Padoa (1900) related his proposal to another heuristic that was already in use.
Namely, we can show that a formal axiom ψ doesn’t follow from formal axioms
φ1,…, φn by exhibiting an interpretation of the symbols in these axioms, which
makes φ1,…, φn hold but ψ fail to hold. This method had been used by Felix Klein
and Eugenio Beltrami to show that Euclid’s parallel postulate doesn’t follow from
his other axioms. In the years around 1900, Giuseppe Peano, Hilbert, andHunting-
ton all applied the method.25

Gottlob Frege took umbrage at Hilbert’s use of this method. One assumption
thatHilbert madewas that the non-logical symbols in the axioms are ambiguous in
the sense that they can be interpreted in different ways in different structures, even
within the same mathematical discourse. Frege commented:

In der Tat, wenn es sich darum handelte, sich und andere zu täuschen, so gäbe es kein
besseres Mittle dazu, als vieldeutige Zeichen. [Indeed, if it were a matter of deceiving
oneself and others, there would be no better means than ambiguous signs.]26

Frege’s comments were not all negative. He went on to sketch a way in which
Hilbert’s arguments could be brought into a formal deductive system, by replacing
the ‘ambiguous signs’ by higher-order variables and then proving formal statements
that quantified universally over these variables, very much as in Tarski’s later work
of the 1930s.27

In this case itwill be best to jump straight to the 1950s to see howFrege’s concerns
were answeredwithinmodel theory. A paper of Tarski andVaught indicates how to
write within pure set theory a recursive definition of the relation:28

Sentence φ is true in structure M. (1)

Standard methods allow this recursive definition to be reduced to a set-theoretic
formula θ(M, φ). The independence notion mentioned by Padoa above can then
be formalised in pure set theory as

∃M(θ(M, φ1) ∧… ∧ θ(M, φn) ∧ ¬θ(M, ψ)).
Hilbert’s independence proofs in hisGrundlagen der Geometrie can be read as prov-
ing set-theoretic sentences of this form,29 and it then becomes a standard but te-
dious exercise to translate Hilbert’s proofs into purely set-theoretic arguments. In
these resulting arguments there is no mention of the meanings of symbols, since
‘meaning’ is not a set-theoretic notion. Thus Frege’s complaint about ambiguous
signs is met. (Tarski and Vaught use first-order logic, and some of Hilbert’s formu-
lations were not first-order; but set-theoretic formulas corresponding to θ can be

25 Peano (1891), Hilbert (1899), and Huntington (1902). 26 Frege (1906: 307). 27 Frege
(1906) and Tarski (1935a). 28 Tarski and Vaught (1958). 29 Hilbert (1899).
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found for any other reasonable logic.) Frege had other objections, for example to
Hilbert’s use of the word ‘axiom’. But ‘axiom’ is not a set-theoretic notion either, so
this and all similar objections lose their purchase.

Now we can go back to the 1930s to see where the formula θ(M, φ) came from.
In 1933 Tarski published a paper in which he considered any formalised theory T
satisfying certain conditions;30 oneof the conditionswas that the symbols ofThave
fixed and known meanings, in such a way that every sentence of T is either true or
false. This included the case whereM is a fixed structure and φ is a formal sentence
whose non-logical symbols are interpreted as in M. He showed how to construct
a metamathematical formula θ′, using only higher order logic, syntax and symbols
expressing the notions expressible by symbols of T, such that θ′(φ) is true if and
only if φ is a true sentence of T. [See §§1.3, 12.4, 12.a.]

Tarski’s famous ‘Concept ofTruth’ paper is a translationof the expandedGerman
version of his 1933 paper.31 None of these versions of the paper should be counted
as model-theoretic; in fact neither the word ‘model’ nor any equivalent expression
occurs in any of them. But Tarski wanted to show that his truth definition could
be used to give a precise and rigorously defined meaning to the relation (1) with
M variable. Here he ran up against the problem that had vexed Frege. Namely,
how do we deal with the notion of giving a meaning in M to a symbol in φ which
might already have another meaning? Tarski came to suppy an answer remarkably
close to Frege’s.32 Namely, he replaces the non-logical symbols in φ by variables x,
and then uses his truth definition to express that M satisfies the resulting formula
φ0(x). From the later point of view of model theory, this procedure carries irrele-
vant clutter. But it can be converted into a formula θ(M, φ) expressing (1), in set
theory or some suitable higher order logic.

Tarski in the 1950s had a clean mathematical definition of (1), but he still tended
to avoid theuseof anynotation such asMod(T) for the class ofmodels of the theory
T.33 If one also writes K for the set of sentences true in all the structures of the
classK, then there are certain fundamental facts that we expect to see set down, for
example

T ⊆ Th(K) iff Mod(T) ⊇ K

But this group of facts are found in Abraham Robinson’s doctoral thesis of 1949,34

not in Tarski’s model-theoretic papers.

30 Tarski (1933). 31 Tarski (1983: Paper VIII). 32 Tarski (1936, 1994); followed by Tarski’s
student Andrzej Mostowski in his (1948). 33 For T a single sentence this notion does appear briefly
in Definition 14(ii) on p.710 of his 1952. 34 A. Robinson (1951: 36–7).
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18.3 Definable relations in one structure
The method of quantifier elimination

In his ‘Concept of truth’ paper, Tarski presents several examples of truth definitions
for different kinds of language. He describes one of them as ‘purely accidental’.35 In
this example he considers what today we would call the structure M of all subsets
of a given set a, with relation ⊆; he discusses what can be said about M using the
corresponding first-order language L. (This may be an anachronism; one could
also describe his example as the structure consisting of the set a with no relations,
and a correspondingmonadic second-order language.) Tarski works out an explicit
definition of the relation ‘φ is true in M’, where φ ranges over the sentences of L.

This truth definitionmight be accidental, but Tarski’s decision tomention it was
not. Leopold Löwenheimhad already studied the same examplewithin the context
of the Peirce–Schröder calculus of relatives, and he had proved a very suggestive re-
sult.36 Inmodern terms, Löwenheimhad shown that there is a set of ‘basic’ formulas
of the language L with the property that every formula φ of L can be reduced to a
Boolean combination ψ of basic formulas which is equivalent to φ in the sense that
exactly the same assignments to variables satisfy it inM. Thoralf Skolem andHein-
rich Behmann had reworked Löwenheim’s argument so as to replace the calculus of
relatives bymore modern logical languages.37 In 1927, Cooper H. Langford applied
the same ideas to dense or discrete linear orderings.38

Tarski realised that not only the arguments of Löwenheim and Skolem, but also
the heuristics behind them, provided a general method for analysing structures.
This method became known as the method of quantifier elimination. In his War-
saw seminar, starting in 1927, Tarski and his students applied it to a wide range
of interesting structures. An important example was the ordered abelian group of
integers—not the natural numbers—with symbols for 0, 1,+ and<.39 Anotherwas
the ordered field of real numbers.40 In both these cases the method yielded (a) a
small and easily described set of basic formulas, (b) a description of all the rela-
tions definable in the structure by first-order formulas, (c) an axiomatisation of the
set of all first-order sentences true in the structure, and (d) an algorithm for testing
the truth of any sentence in the structure. (Here (b) comes at once from (a). For
(c), one would write down any axioms needed to reduce all formulas to Boolean
combinations of basic formulas, and all axioms needed to determine the truth or
falsehood of basic sentences. Then (d) follows since the procedure for reducing to
basic formulas is effective.)

In principle the method of quantifier elimination tells us, for any structure M,
what are the sets and relations on the domain of M that are definable by formulas

35 Tarski (1933: §3). 36 Löwenheim (1915: §4). 37 Skolem (1919: §4) and Behmann (1922).
38 Langford (1926/27a,b). 39 Presburger (1930) and supplement. 40 Tarski (1931).
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of the first-order language appropriate for M. In practice we may lack the skill or
the information needed to carry the method to a conclusion. But thanks to earlier
work using this method, model theorists in the 1950s had at their disposal a large
amount of information about the first-order definable relations in various impor-
tant mathematical structures. This certainly helped tomake the definable relations
of a structure one of the fundamental tools of model theory. (In 1910, Hermann
Weyl had introduced the class of first-order definable relations of a relational struc-
ture, but without using a formal language.)41

In some cases, but not all, the method showed that every definable relation in
the structure is defined by a quantifier-free formula. Joseph Shoenfield, in his text-
book,42 said that a theory T admits elimination of quantifiers if every formula of the
language of T is equivalent, provably in T, to a quantifier-free formula. He gave a
model-theoretic sufficient condition for a first-order theory to admit elimination of
quantifiers, and showed that some of the results of the method of quantifier elim-
ination could be recovered easily by using this condition. Soon afterwards, neces-
sary and sufficientmodel-theoretic conditions for admitting quantifier elimination
were found.43

For most model theorists, these new methods won hands down against the
sometimes heavy syntactic calculations that were needed for the method of quan-
tifier elimination. Tarski dissented. As late as 1978 he was defending the method of
quantifier elimination against modern methods

[…] which often prove more efficient. […] It seems to us that the elimination of quan-
tifiers, whenever it is applicable to a theory, provides us with direct and clear insight into
both the syntactical structure and the semantical contents of that theory—indeed, amore
direct and clearer insight than the modern more powerful methods to which we referred
above.44

The method of quantifier elimination works on just one structure at a time. It in-
volves no comparison of structures. For example Tarski applied it to the ordered
field of reals, and discovered among other things that the sets of reals definable in
this field by first-order formulas are precisely the unions of finitely many sets, each
of which is either a singleton or an open interval with endpoints either in the field
or ±∞. Ordered structures with this property are said to be o-minimal, following
AnandPillay andCharlesSteinhorn.45 [See §4.10,Definition4.19.] Tarski also found
a set T of sentences which axiomatises the field, in the sense that a first-order sen-
tence is true in the field if and only if it is provable fromT. It was realised some time
later thatT is precisely the set of axioms defining real-closed fields. From the calcu-
lations in the quantifier elimination, it then followed at once that every real-closed
field is o-minimal. So Tarski proved a theorem about a class of structures, but the

41 Weyl (1910). 42 Shoenfield (1967: 83). 43 For example Feferman (1968: 81–2).
44 Doner et al. (1978: 1–2). 45 Pillay and Steinhorn (1984).
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theorem was proved by a procedure that applied separately to each structure in the
class. There was never any direct comparison of structures.

In fact Tarski’s quantifier elimination for the reals had much wider ramifications
even than this. Lou van den Dries had pointed out in 1984 that the o-minimality
of the field of real numbers already gives strong information about definable rela-
tions of higher arity—in particular, it allows one to recover the cell decomposition
of semialgebraic sets in real geometry.46 Julia Knight, Pillay, and Steinhorn gen-
eralised this cell decomposition to all o-minimal structures, and showed that any
structure elementarily equivalent to an o-minimal structure is also o-minimal.47

O-minimal structures became one of the most productive tools for applications
of model theory, thanks largely to the insightful enthusiasm of van den Dries and
some deep applications by Alex Wilkie.48

In 1959, Feferman and Vaught published a paper in which they study a structure M
of the following form.49 An indexed family (Ni : i ∈ I) of structures is given, and
M is the Cartesian product. [See §13.c for notation.] They apply the method of
quantifier elimination toM, but with a twist: instead of showing that each formula
φ(x) is equivalent to a Boolean combination of basic formulas, they find for each
formula φ(x) a formula Φ in the language of the powerset Boolean algebra ℘(I),
and formulas θ1(x),…, θn(x) such that, writing Xk(a) for the set of indices i ∈ I
such that the projection of a to Ni satisfies θ i(x) in Ni , the statement

a satisfies φ(x) in M

holds if and only if

(X1(a),…,Xn(a)) satisfies Φ in ℘(I).
Having got this far, they were able to prove analogous theorems for various other
constructions besides Cartesian product. (The list has been expanded since.)50

The mind boggles at how these results could ever have been discovered. In fact we
know the history, and an important ancestor of the results is work of Mostowski,51

applying a form of quantifier elimination to show, for example, that the set of sen-
tences true in an initial ordinal with the operation of natural addition of ordinals is
a decidable set.

Beforewe leave the topic of quantifier elimination,we shouldnote aquantifier elim-
ination given by Angus Macintyre for p-adic number fields in a suitable first-order
language.52 Macintyre’s reduction of the definable sets to Boolean combinations

46 van den Dries (1984). 47 J. F. Knight et al. (1986). 48 van den Dries (1998) and, for exam-
ple, Wilkie (1996). 49 Feferman and Vaught (1959). 50 Makowsky (2004). 51 Mostowski
(1952). 52 Macintyre (1976).
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of basic sets was exactly what Jan Denef needed in order to evaluate certain p-adic
integrals.53 (This marriage of quantifier elimination and integration was soon ex-
tended toother cases.) OneofMacintyre’s concerns throughout his career has been
to use first-order logic in order to bring mathematical notions into tractable forms.
A more recent example is his reduction of a significant part of William Fulton’s
scheme-theoretic Intersection theory to first-order form, by careful rearrangement of
the material.54 Macintyre’s paper illustrates how much useful work in areas related
to model theory can be done by concentration and intelligence, with only minimal
recourse to model-theoretic devices. (He uses some ultraproducts, but little else.)

The definition of satisfaction

Tarski’s truth definition of the 1930s gave, for each structure M and logic L , a for-
mula θ(x) of some appropriate form of higher-order logic such that

θ(φ) iff φ is a sentence of L that is true in M.

[See §12.a.] The revised form in his later paper with Vaught gave a formula θ(x, y)
of set theory such that for every structureM and first-order sentence with symbols
appropriate for M,55

θ(M, φ)↔ M is a model of φ. (2)

[See §1.3.] Both truth definitions used induction on the complexity of formulas,
and as a result of this the revised form actually gave a set-theoretic definition of the
relation

The sequence a of elements of M satisfies the formula φ.

The earlier definition was given for a single fixed structure; the later allowed the
structure to vary, but also involved no comparison of structures.

It is rather rare for model theorists to give arguments that refer to the existence
of set-theoretic formulas defining truth or satisfaction in structures.56 On the other
hand the recursive clauses of Tarski’s truth definition are used constantly, often
without explicit mention. For example ∃xφ(x) is true in M if and only if some
element of M satisfies φ(x).

Already in 1949 Abraham Robinson gave a recursive definition of a formula θ as
in (2), but without invoking the notion of elements satisfying a formula.57 He was
able to do this by adding an assumption that every element of a structure is associ-
ated with an individual constant. [See §1.5, Definition 1.5.] This association could

53 Denef 1984. 54 Fulton (1984) and Macintyre (2000b). 55 Tarski and Vaught (1958).
56 Such arguments do occur in what Barwise (1972) called ‘soft model theory’, which deduces mod-

el-theoretic theorems from the fact that the formula defining satisfaction is set-theoretically absolute. [See
§9.a.] 57 A. Robinson (1951: 19–21).
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be ‘possibly only in passing’: if a structure M has elements with no correspond-
ing individual constant, then new individual constants can be added for purposes
of the truth definition. The assumption proved to be a valuable device for mathe-
matical purposes, because it led directly to Robinson’s notion of the diagram of a
structure. The diagram D of M is the set of all atomic or negated atomic sentences
true in M, in a language where every element has a corresponding individual con-
stant. [See §15.4, footnote 35.] Then M is embeddable in N if and only if N is a
model of D.58 Likewise, we can take the complete diagram of M to be the set of all
first-order sentences true in M with constants for all elements; then M is elemen-
tarily embeddable in N if and only if N is a model of the complete diagram of M.
These devices became valuable tools of the paradigm shift which Robinson initi-
ated, to make mappings between structures a central notion of model theory; see
§18.5 below.

Robinson’s truth definitionwas serendipity. His original reason for assuming the
individual constants was that he learned his logic not from Tarski but from Rudolf
Carnap, and Carnap had assumed that each element of a ‘state-description’—his
nearest counterpart of a structure—was named by a constant.59 Carnap’s involve-
ment in this area was almost as old as Tarski’s. In 1932, Gödel wrote to Carnap that
he was intending to publish “eine Definition für ‘wahr’”;60 this was in the context
of arithmetic, where every element is named by a constant term. Gödel never pub-
lished it, and we can only guess how it would have gone.61

Following Mal’tsev,62 many authors have found it convenient to use the notion
of the signature of a structure or a language, which is the set of relation, function
and individual constant symbols of the language. [See §1.1, Definition 1.1.] An ear-
lier notion playing a similar role was the similarity type, following McKinsey and
Tarski: ‘Two algebras […] are called similar if the number of operations is the same
in both algebras and if the corresponding operations […] are operations with the
same number of terms’.63

18.4 Building a structure
The method of quantifier elimination serves to analyse structures that we already
have. But model theory relies also on methods for building new structures with
specified properties.

In his paper of 1915 on the calculus of relatives, Löwenheim showed that every sen-
tence of first-order logic, if it has amodel, has amodel with atmost countablymany

58 Cf. A. Robinson (1956b: 24). 59 See for example Carnap’s definition of ‘holds in a state-de-
scription’, Carnap (1947: 9). 60 Gödel (2003: 346–7). 61 See Feferman (1998). 62 Mal’tsev
(1962). 63 McKinsey and Tarski (1944: 190).
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elements. His proof has several interesting features, including his introduction of
function symbols to reduce the satisfiability of a sentence:64

∀x∃yφ(x, y)
to the satisfiability of the sentence

∀xφ(x,F(x)).
Thus it seems that Löwenheim invented Skolem functions, if we forgive him his
bizarre explanation of the passage from the first sentence to the second. Löwen-
heim’s starting assumption is that a given sentence φ is ‘satisfied’ in some domain;
this means the same as saying that some structure is a model of φ, but Löwenheim
never mentions the structure, which is another reason why his proof is hard to fol-
low.65

Skolem tidied up Löwenheim’s argument and strengthened the result.66 He
showed, using a coherent account of Skolem functions, that ifT is a countable first-
order theory with a model M, then T has a model N with at most countably el-
ements. (In fact he allowed countable conjunctions and disjunctions in the sen-
tences of T too, and infinite quantifier strings.) The proof shows that N can be
taken as an elementary substructure of M, but at this date Skolem lacked even the
notion of substructure. [See §4.1 Definition 4.3, §3.8 Definition 3.7.] Because val-
ues have to be chosen for the Skolem functions, and the starting structure need not
allow these values to be defined explicitly (for example it may have too many auto-
morphisms), Skolem had to assume the axiom of choice.

Skolem’s argument was adapted and generalised in many ways. For example if κ
is an infinite cardinal,L is a signature of cardinality at most κ, andM is a structure
of signature L containing a set of elements X of cardinality at most κ, then M has
an elementary substructure of cardinality at most κ containing all the elements of
X. This is for first-order logic, but most logics allow analogous results. Theorems
of this type came to be called Downward Löwenheim–Skolem Theorems. [See §7.3,
Theorem 7.2(1).] Takeuti is said to have joked thatDownwardmust be a very clever
person to have so many theorems.

Later, Skolem made an adjustment of his argument which was fateful for model
theory.67 Starting from a structureM, he built a new structureN; but the elements
of N were not elements of M, they were all the ordinals below an ordinal α. (He
chose α = ω, so that the elements of N were natural numbers.) The construction
of N was inductive, with infinitely many steps. At each step a choice was made
that ensured that certain elements would satisfy a certain formula. (For example

64 Löwenheim (1915: ¶4 in the proof of Theorem 2). 65 See the analysis in Badesa (2004).
66 Skolem (1920). 67 Skolem (1922).
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if the formula was ∃xR(x, y) and n was a given natural number, then it might be
specified that R(m, n) holds, where m is the first natural number not so far used;
the well-ordering of α made this choice well-defined.) Some combinatorics was
invoked to ensure that by the end of the constructionNwould have all the required
properties.68

Using this scheme, Skolem showed, without using the axiom of choice, that if T
is a countable first-order theory andT has amodel, thenT has amodel with atmost
countably many elements.69 It was on this basis that he stated Skolem’s Paradox: if
Zermelo–Fraenkel set theory is consistent then it has a countable model, so that
‘There are uncountable cardinals’ is satisfied in a countable domain. [See §8.2.]

The scheme allows many variations: a larger ordinal can be used, different start-
ing assumptions can be fed in, different combinatorics can be invoked. The ear-
liest variation came in the 1930 doctoral thesis of Gödel.70 Gödel started not with
Skolem’s assumption that the theoryThas amodel, butwith the assumption that no
contradiction can be deduced from T within a standard proof calculus. In this way
Gödel proved completeness for first-order logic: if no contradiction can be deduced
from the countable first-order theory T, then T has a model. [See §4.a, Theorem
4.24.] Using the fact that proofs are finite, he pointed out the consequence that a
countable first-order theory has a model if and only if every finite subset of it has
a model; this is the Compactness Theorem for countable first-order logic. [See §4.1,
Theorem 4.1.] In fact we can prove the Compactness Theorem without mention-
ing formal deductions, by moving back halfway to Skolem’s construction; instead
of assuming, as Skolem did, that T has a model, we assume that every finite subset
ofT has a model. (This device is not in Gödel’s paper, but later it became common
knowledge.)

To prove Completeness for uncountable theories in first-order logic, the same
scheme works but with an uncountable cardinal in place of ω, and more careful
combinatorics to justify the induction. This was done first by Mal’tsev (1936), and
later but independently by Leon Henkin and by Abraham Robinson.71 Probably
the versionmost commonly used today is Henkin’s neat second attempt, as filtered
through Gisbert Hasenjaeger.72 Henkin’s method prepares the theory before the
inductive construction begins. The preparation includes expandingT to amaximal
syntactically consistent set—which in general requires the axiom of choice. Again
we can convert the proof to a proof of the Compactness Theorem for first-order
theories of any cardinality, by the same device as in the previous paragraph. [See
§§4.a–4.b.]

68 In Skolem (1922) a finite set of alternative choices were made at each step, creating a tree of choices;
then a form of König’s tree lemma was invoked to ensure that at least one branch of the tree is infinite and
hence meets the requirements. 69 Skolem (1922). 70 Gödel (1931). There is some doubt how
far Gödel was aware of Skolem (1922); see van Atten and Kennedy 2009. 71 Henkin (1949) from his
PhD thesis of 1947; A. Robinson (1951) from his PhD thesis of 1949. 72 Hasenjaeger (1953).



452 hodges: a short history of model theory

Another variation of Skolem’s scheme is omitting types. The type of a tuple a of ele-
ments in a structureN is the set Φ(x)of all formulas φ(x) such that a satisfies φ(x)
in N; N is said to realise the types of its tuples of elements. If X is a set of elements
of N and the formulas φ(x) are allowed to contain constants for the elements of X,
we say that Φ(x) is a type over X. [See §14.1.]

The type of a tuple a of elements of N is an infinite set of formulas. This al-
lows the possibility that the type of a is not yet determined at any finite step in the
construction of N; so if Φ(x) is a particular set of formulas, we have enough op-
portunities in the construction to ensure that the type of a inN is not Φ(x). IfN is
countable then there are countablymany tuples of elements, andwe can interweave
the requirements so as to ensure that each of countably many sets Φ(x) is omitted
in N, in the sense that no tuple in N has Φ(x) as its type. (This presupposes that
the sets Φ(x) are non-principal, i.e. not determined by a finite part of themselves.)
Each set omitted can be ‘over’ a finite number of elements of N.

In 1959 Vaught gave the classic omitting types theorem for countable models of
complete first-order theories.73 This theorem allows one to omit countably many
types at once; Vaught attributes this feature toAndrzej Ehrenfeucht. Thepaper also
containsVaught’s Conjecture as a question: ‘Can it be proved, without the use of the
continuum hypothesis, that there exists a complete theory having exactly ℵ1 non-
isomorphic denumerablemodels?’ (TheConjecture is that there is no such theory.
Some special cases of the Conjecture have been proved; at the time of writing it is
still unresolved whether a counterexample has been given.)

There were several close variants of omitting types. The Henkin–Orey theorem
was one that appeared before Vaught’s paper, while Robinson’s finite forcing and
Grilliot’s theorem on constructing families of models with few types in common
were two that came later.74 Martin Ziegler made finite forcing more palatable by
recasting it in terms of Banach–Mazur games;75 the same recasting works for all
versions of omitting types.

Finite forcing builds existentially closed models; these were introduced into
model theory byMichael Rabin and Per Lindström.76 During the 1970s Oleg Bele-
gradek, Ziegler, SaharonShelah andothers put a gooddeal of energy into construct-
ing existentially closed groups, after Macintyre had shown that they have remark-
able definability properties.77

Skolem’s scheme also allows the use of set-theoretic prediction principles. These
are set-theoretic statements, some provable in Zermelo–Fraenkel set theory and
some true in the constructible universe or merely consistent, which tell us that cer-
tain things are guaranteed to happen a large number of times (for example on a

73 Vaught (1961). 74 Orey (1956), Barwise and A. Robinson (1970), and Grilliot (1972).
75 Ziegler (1980). 76 Rabin (1964) and Lindström (1964). 77 Macintyre (1972).
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stationary subset of an uncountable cardinal). Such principles were first pointed
out by Ronald Jensen;78 Shelah added Jensen’s principles and some of his own to
the arsenal of model-theoretic techniques.79 In this work, the boundaries between
set theory, model theory, and abelian group theory become very thin.

The Compactness Theorem can often allow us to build structures without having
to go through the combinatorics needed to prove the Compactness Theorem it-
self. For example, given the Compactness Theorem, it is easy to prove that if λ is
an infinite cardinal, L is a signature of cardinality at most λ, L is a first-order lan-
guage of signature σ , and M is an infinite structure of signature L with fewer than
λ elements, then M has an elementary extension of cardinality λ. One takes the
complete diagramofM, adds λ new individual constants togetherwith inequations
to express that the new constants stand for distinct elements, and then notes that
every finite subset of the resulting theory has a model by interpreting the finitely
many new constants in M. This result became known as the Upward Löwenheim–
Skolem–Tarski Theorem—though Tarski’s name was generally dropped. [See §7.3,
Theorem 7.2(2).] The irony was that it was Skolem,80 not Tarski, who for anti-
platonist reasons refused to accept that the theorem was true (though he allowed
that it might be deducible within some formal set theories).

TheUpward Löwenheim–SkolemTheorem above was first stated by Tarski and
Vaught, though the proof above by Compactness was essentially as in Mal’tsev’s
proof of a weaker result.81 Tarski had claimed in 1934 that in 1927/8 he had proved
that every consistent first-order theory with no finite model has a model with un-
countably many elements.82

Combinatorics could be added to Compactness to get further results. Ehren-
feucht and Mostowski showed, using Compactness and Ramsey’s Theorem, that if
T is a complete first-order theory with infinite models and (X,<) is a linearly or-
dered set, then T has a model M whose domain includes X, and for each finite n,
any two strictly increasing n-tuples from X satisfy the same formulas in M.83 Thus(X,<) is what later came to be called an indiscernible sequence in M. [See §15.5, Def-
inition 15.20.] If M is the closure of X under Skolem functions (as we can always
arrange), M is said to be an Ehrenfeucht–Mostowski model of T.

Ehrenfeucht–Mostowski models have tightly controlled properties. For exam-
ple they realise few types (see their use in §18.7 below). By choosing (X,<) and(X′,<′) sufficiently different, we canoften ensure that theEhrenfeucht–Mostowski
models constructed over these twoordered sets are not isomorphic; this is the basic
idea underlying many of Shelah’s constructions of large families of nonisomorphic

78 Jensen (1972). 79 See for example the use of Shelah’s ‘black box’ to construct abelian groupswith
interesting properties, inCorner andGöbel (1985). 80 Skolem(1955). 81 Tarski andVaught (1958)
andMal’tsev (1936). 82 The claim is in a note added by the editors to the end of Skolem (1934). Vaught
(1954: 160) reports the few facts that are known about this early proof by Tarski. 83 Ehrenfeucht and
Mostowski (1956).
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models (again see §18.7). One can also construct Ehrenfeucht–Mostowski models
of infinitary theories, using various theorems of the Erdős–Rado partition calculus
in place of Ramsey’s Theorem. As a byproduct we get a versatile way of building
two-cardinalmodels, i.e.models of first-order theories inwhich somedefinable parts
have one infinite cardinality and others have another infinite cardinality, asMichael
Morley showed.84 (Vaught hadobtained two-cardinal results earlier by othermeth-
ods.)

In his doctoral dissertation of 1966 Jack Silver, building on work of Haim Gaif-
man and Frederick Rowbottom, showed that if the set-theoretic universe contains
a measurable cardinal (or even an Erdős cardinal), then the constructible universe
forms an Ehrenfeucht–Mostowski model whose indiscernibles are a class of ordi-
nals which includes all uncountable cardinals. Silver’s dissertation was published
as ‘Some applications of model theory in set theory’;85 but the Silver indiscernibles
rapidly tookon a life of their ownasoneof the fundamental notionsof large cardinal
theory.

Other proofs of the Compactness Theorem were found later. Among the most el-
egant, one was found by Edward Frayne, Anne Morel, and Dana Scott using ultra-
products (on which see §18.6 below),86 after Tarski had noticed that reduced prod-
ucts can be used to proveCompactness for sets ofHorn sentences. [See §13.c, Corol-
lary 13.23.] A quirky but extremely neat proof of the Compactness Theorem was
found later by Itai Ben-Yaacov, using a fragment of first-order logic called positive
logic.87

There is another general procedure for building structures; it goes by the name of
interpretation. [See Chapter 5.] We illustrate with the familiar construction of the
fieldQ of rational numbers from the ring Z of integers. Suppose Z is given. We se-
lect a definable relation on Z, namely the set of all ordered pairs (m, n)with n ≠ 0;
a formula φdom(x, y) defines this relation in Z. We define an equivalence relation
on these pairs: (m, n) ∼ (m′, n′) if and only if mn′ = m′n; a formula φ∼(x, y, x′, y′)
defines this relation. The elements of the structureQwill be the equivalence classes
of ∼. We define the operation × on the equivalence classes, by defining it on repre-
sentatives:

(m, n) × (m′, n′) = (m′′, n′′) iff mm′n′′ = m′′nn′.
Again this is definable inZ by a formula φ×(x, y, x′, y′, x′′, y′′). Likewise with+ and−, and −1 too if we find a suitable conventional value for 0−1. The outcome is that
the instructions for buildingQ fromZ are coded up as a bundle Γ of formulas in the
language of Z, indexed by the operations of Q together with formulas defining the

84 Morley (1965b). 85 Silver (1971). 86 Frayne et al. (1962/1963). 87 Ben-Yaacov (2003).
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equivalence classes that form the elements of Q. We can summarise the situation
by writingQ = Γ(Z). The bundle Γ is the interpretation.

Note that ifR is any other integral domain thenwe can form Γ(R)with the same
Γ; it will be the field of fractions of R. Note also that if ψ is any sentence in the
first-order language ofQ, then via Γ there is a sentence ψΓ such that ψΓ holds in R
if and only if ψ holds in Γ(R). If ψΓ can be effectively calculated from ψ , and the
set of sentences true in R is recursive, then it is decidable whether or not ψ holds in
Γ(R).

Mostowski, Tarski, Mostowski, et al., Mal’tsev, and Ershov gave definitions of
the notion of interpretation.88 To construct the domain of the new structure,
Mostowski and Tarski used single elements; Mal’tsev used ordered triples of ele-
ments, and Ershov introduced a definable equivalence relation on n-tuples. In the
1970s model theorists became interested in the question what structures are inter-
pretable in a given structure, andErshov’s notionof interpretationwas generally the
one they used. Shelah described how onemight think of the elements of structures
interpretable in a structure M as imaginary elements of M.89

Hilbert and Bernays noticed that if the theory T, suitably encoded as a set of
natural numbers, is definable in the structure N of natural numbers, then Gödel’s
completeness proof can be carried out within first-order arithmetic, and the effect
is that the built modelN ofT has the form Γ(N) for an interpretation Γ defined in
terms ofT.90 They also put a bound on the arithmetical complexity of the relations
of N. This suggestive result points in a number of directions; we mention two.

One direction is to consider structures that are encoded in the natural numbers
in such a way that all their relations and functions are recursive. Model theory with
the structures taken to be of this form is called recursive model theory. Mal’tsev took
some early steps in this direction.91 The textbook of Sergei Goncharov and Ershov
could cite nearly 400 references.92

Another direction is to exploit the idea of doingmodel theory within arithmetic,
for example constructingmodels of arithmetic within arithmetic. Ideas akin to this
allowed Jeff Paris andLeoHarrington to find, for the first time, a naturally occurring
theorem of arithmetic that is provable in set theory but independent of the first-
order Peano axioms.93

18.5 Maps between structures
During the period 1930–50, mathematicians generally had begun to take a closer
interest in themaps between structures. This was the period that saw the invention

88 Mostowski (1948: 270), Tarski, Mostowski, et al. (1953: 20ff), Mal’tsev (1960a), and Ershov
(1974). 89 Shelah (1978: chIII, §6). 90 Hilbert and Bernays (1939). 91 Mal’tsev (1960b).

92 Goncharov and Ershov (1999); see also Ershov et al. (1998). 93 Paris and Harrington (1977).
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of category theory. The trend naturally made its way into model theory.
GarrettBirkhoff publishedhis famous characterisationof the classes ofmodels of

sets of identities in 1935.94 Birkhoff ’s paper uses anumberof straightforwardmodel-
theoretic facts about mappings, for example that universally quantified equations
are preserved under taking homomorphic images; Edward Marczewski extended
this fact to all positive first-order sentences and asked for a converse.95 Tarski re-
ported that his own work on formulas preserved in substructures (the Łoś–Tarski
Theorem) was done in 1949–50.96

In §18.6 we will examine how these new ideas played out in model theory. In the
present sectionwewill see howmaps between structures came to play a deeper role
inmodel theory, not just as possible topics but as essential tools of the subject. One
can trace this development to twomodel theorists, AbrahamRobinson andRoland
Fraïssé. I begin with Robinson.

Abraham Robinson

In his PhD thesis, Robinson considered two algebraically closed fields M and N
of the same characteristic.97 By juggling upwards and downwards Löwenheim–
Skolem arguments, he found algebraically closed fields M∗ and N∗ which both
have transcendence degree ω, such that the same first-order sentences hold in M∗
andM (so thatM andM∗ have the same characteristic), and the same holds forN
andN∗. Then he quoted Steinitz’s Theorem, that two algebraically closed fields of
the same characteristic and the same transcendence degree are isomorphic. From
this he deduced that the same first-order sentences hold inM∗ andN∗, and hence
also in M and N. So the first-order theory of algebraically closed fields of a given
characteristic is a complete theory—it settles all questions in the language.

There were two major novelties here. First, Robinson used a known algebraic
fact about maps between structures (Steinitz’s Theorem) in order to deduce a
model-theoretic conclusion. Second, he used complete diagrams so as to construct
elementary embeddings. At this date the use of elementary embeddings was only
implicit. [See §4.1, Definitions 4.3–4.4.] Tarski defined elementary extensions in
1952/3 (though at that date he called them arithmetical extensions) and published
them some years later.98 Conspicuously, Tarski failed even then to define elemen-
tary embeddings; ‘elementary imbeddings’ [sic] appeared in a paper first published
in 1961.99

Between Robinson’s doing this work and publishing it, Tarski published the
completeness of the theory of algebraically closed fields of a given characteristic,
which he haddiscovered by themethodof quantifier elimination. So themethodof
quantifier elimination gaveRobinson’s result, togetherwith other results that didn’t

94 Birkhoff (1935). 95 Marczewski (1951). 96 Tarski (1954). 97 A. Robinson (1951:
59–60). 98 Tarski and Vaught (1958). 99 Kochen (1961).
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obviously yield to Robinson’s new methods. The next few years saw Robinson
working hard to extend his methods to capture Tarski’s results and more besides.
To this workwe owe the notions ofmodel completeness, model companion, differ-
entially closed field, an amalgamation criterion for quantifier elimination, model-
theoretic forcing, and Robinson’s joint consistency theorem that gave the Craig In-
terpolation Theorem.

Vaught was one of the first model theorists to exploit the new methods. For ex-
ample he pointed out, using essentially Robinson’s argument, that any countable
theory that is λ-categorical for some infinite λ and has no finite models must be
complete; this is Vaught’s Test.100 [See §3.b, Proposition 3.10.] Robinson wrote ap-
preciatively of Vaught’s Test, noting that his own argument could be simplified by
taking λ uncountable.101

Roland Fraïssé

In 1953/4 Fraïssé published two papers in which he pointed out that certain count-
able structures are in a sense determined by the families of finite structures embed-
dable in them.102 Taking the ordered set of rational numbers as a paradigm, hemade
two important observations.

(a) We can characterise those classes of finite structures which are of the form

all finite structures embeddable in M

for some countable structure M. (Following Fraïssé I shall call these γ-
classes—it is not a standard name.)

(b) A γ-class has the amalgamation property if and only if M can be chosen to
be homogeneous, and in this case M is determined up to isomorphism by
the γ-class. (A class K has the amalgamation property if for all embeddings
e1 : A #→ B1 and e2 : A #→ B2 within K there are embeddings f 1 :
B1 #→ C and f 2 : B2 #→ C, also within K, such that f 1 ○ e1 = f 2 ○ e2.
A is homogeneous if every isomorphism between finite substructures of A
extends to an automorphism of A.)

By observation (a), Fraïssé introduced into model theory a kind of Galois theory
of structures: it invited one to think of a structure as built up by a pattern of amal-
gamated extensions of smaller structures. This idea became important in stability
theory.

By observation (b), Fraïssé introduced the amalgamation property into model
theory (though the name came later). Also he provided away of building countable
structures by assembling a suitable γ-class of finite structures; intuitively, one keeps
extending in all possible ways, amalgamating the resulting extensions as one goes.

100 Vaught (1954). 101 A. Robinson (1956b: 11). 102 Fraïssé (1953, 1954a).
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His version of the idea was modest, but it continues to be widely used as a source
of ω-categorical structures. Ehud Hrushovski used a version of it to construct his
‘new strongly minimal set’.103[See §17.3.]

In 1956 and 1960 Bjarni Jónsson, who had reviewed Fraïssé’s 1953-paper, pub-
lished two papers removing the limitation to finite and countable structures in
Fraïssé’s construction of homogeneous structures.104 The price he had to pay was
that the generalised continuum hypothesis was needed at some cardinals. Morley
realised almost at once that, thanks to the Compactness Theorem, Jónsson’s as-
sumptions on the γ-class are verified if one considers the class of all ‘small’ subsets
of models of a complete theory T and replaces embeddings by partial elementary
maps—i.e. elementary maps defined on a subset of a model.105 One feature of the
resulting structuresM, at least under suitable conditions on the cardinals involved,
was that if X was a set of elements of M, of smaller cardinality than M itself, then
every type of T over X would be realised in M. This property of M was called sat-
uration (generalising Vaught’s notion of a saturated countable structure).106

The Morley–Vaught theory tells us that under suitable set-theoretic assump-
tions, every structure has a saturated elementary extension. These set-theoretic as-
sumptions were always a stumbling block, and so weak forms of saturation were
devised that served the same purposes without special assumptions. For exam-
ple every structure has an elementary extension that is special.107 Every countable
structure has a recursively saturated elementary extension.108 For every structure
M and cardinal κ,M has an elementary extension that is κ-saturated, meaning that
every type over fewer than κ elements is realised.

Saunders Mac Lane reports that when his student Morley first brought him the
material that led to Morley and Vaught 1962, ‘[…] I said, in effect: “Mike, applica-
tions of the compactness theorem are a dime a dozen. Go do something better’.”109

MacLane adds thatMorley’sTheorem(see §18.7 below)was the fruit of this advice.
[See §17.3, Theorem 17.3.]

In the 1970s there was some debate about how best to handle the Morley–Vaught
γ-class. Gerald Sacks proposed one should think of it as a category with partial
elementary maps as morphisms.110 Shelah went straight to a very large saturated
modelC (butwe never ask exactly how large); in his picture the γ-class is simply the
class of all small subsets of the domain of C, and the partial elementarymaps are the
restrictions of automorphisms of C.111 Shelah’s view prevailed. The structure C was
known as the big model or (following John Baldwin) the monster model. Studying

103 Hrushovski (1992, 1993). 104 Jónsson (1956, 1960). 105 Vaught had come to similar conclu-
sions independently. They published this inMorley and Vaught 1962. Morley and Vaught used a trick from
Skolem 1920, adding relation symbols so that partial elementarymaps become embeddings. 106 Vaught
(1961). 107 Chang and Keisler (1990: 217). 108 Barwise and Schlipf (1976). 109 Mac Lane
(1989). 110 Sacks (1972). 111 Shelah (1978: chI §1).
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models of a complete first-order T, one could go to a monster model and restrict
oneself to subsets of the domainof thismodel, and elementarymaps between them.

In practice themonstermodel came to be used in away that reflectedRobinson’s
approach with complete diagrams. Morley and Vaught speak of Jerome Keisler’s
‘“one element at a time” property’.112 Keisler himself compared his procedure with
the element-at-a-time methods used by Cantor and Hausdorff to build up isomor-
phisms between densely ordered sets.113 Briefly, the idea was to define a partial
elementarymap by starting with a well-ordered listing of elements, say (ai : i < κ),
and constructing a corresponding listing (c i : i < κ) by induction on i, so that each
c i realises the same type over (c j : j < i) as ai realises over (a j : j < i). Then the
mapping ai ↦ c i is elementary. An initial segment of (c i : i < κ)might be given
by the problem in hand, and then κ-saturation was invoked to find the remaining
elements. Amalgamations would be built up one element at a time: for example
given Y ⊃ X and an element b, one would amalgamate Y and X ∪ {b} over X, and
speak of extending the type of b over X to a type over Y.

Around 1970 category theory was developing fast. People noted that by going
with Shelah rather than with Sacks, the model-theoretic community had opted
for the analogue of André Weil’s ‘universal domain’,114 rather than the more re-
cent category-theoretic language of Grothendieck. But other model theorists kept
the category connection alive. Michael Makkai and colleagues did some ground-
work,115 but the categorical approach never came to centre stage. Perhaps model
theorists enjoy handling elements and dislike morphisms between theories. Nev-
ertheless we can point to one useful outcome: Daniel Lascar visited Makkai and
discussed with him the category of elementary embeddings between models of a
complete theory. Lascar’s enquiries threw up the idea ofLascar strong type,116 which
plays a significant role in the study of simple theories and elsewhere.

In the 1970s Saharon Shelah was looking for suitable abstract settings for work in
stability theory for infinitary languages. He called one such setting abstract ele-
mentary classes.117 An abstract elementary class is a class of structures of some
given signature, together with a relation ≺ between structures, satisfying certain
axioms. The axioms include a variant of Jońsson’s axiom of unions of chains;
they don’t include joint embedding or amalgamation, though these two axioms are
added for many applications. Shelah restored the amalgamation viewpoint with a
vengeance:118 to construct structures of cardinality ωn from countable pieces, he
formed n-dimensional amalgams. Shelah carries a remarkable amount of model

112 Morley and Vaught (1962). 113 Keisler (1961: footnote on Theorem 2.2), his doctoral disserta-
tion. See Cantor (1895) and Hausdorff (1908). 114 Weil (1946: ch.IX §1). 115 Makkai and Paré
(1989). 116 Lascar (1982). 117 Shelah (1987a) and Grossberg (2002). 118 Shelah (1983).
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theory over into the setting of abstract elementary classes, considering that the ax-
ioms make no reference to any language—in fact the blurb of his 2009a includes
the remark that ‘Abstract elementary classes provide one way out of the cul de sac
of the model theory of infinitary languages which arose from over-concentration
on syntactic criteria’. This is partly explained by Shelah’s Presentation Theorem,
which states that every abstract elementary class can be got by taking the class of all
models of somegiven first-order theorywhichomit certain types, and then forming
reducts to a smaller signature.

Abstract elementary classes turned out to be a suitable setting for various ana-
logues of first-order model theory. For example Zilber, discussing his ‘analytic
Zariski geometries’, used a notion of stability got by considering these geometries
within a suitable abstract elementary class.119 Also work of Hrushovski, Pillay, and
Ben-Yaacov led to the notion of a compact abstract theory, or cat for short, which
forms a setting for the model theory of Banach spaces or of Hilbert spaces.120 The
motivations behind cats and abstract elementary classes are different, but there are
links.121

In 1964 Jan Mycielski noticed that Kaplansky’s notion of an algebraically compact
abelian group (today more often called a pure-injective abelian group) has a purely
model-theoretic characterisation that is a close analogue of saturation.122 With col-
leagues in Wrocław, Mycielski developed this observation into a theory of atomic
compact structures, which was useful on the borderline between model theory and
universal algebra.

Since atomic compact structures have a large amount of symmetry, they tend to
have neat algebraic structural descriptions too; in fact this was the reason for Ka-
plansky’s interest in them. To some extent the same holds for saturated structures,
and even for κ-saturated structures when κ is large enough. For example in 1970
Paul Eklof andEdwardFischer (and independentlyGabriel Sabbagh) noted that ev-
ery ω1-saturated abelian group is algebraically compact, and so one can read off the
results of Wanda Szmielew’s quantifier elimination for abelian groups rather easily
from Kaplansky’s structure theory.123 Likewise, Ershov used ω1-saturated Boolean
algebras to recover Tarski’s quantifier elimination results for Boolean algebras.124

Clean methods of this kind quickly became standard practice.

18.6 Equivalence and preservation
Tarski tells us that by 1930 he had defined the relation of elementary equivalence, in
modern symbols: M ≡ N if the same first-order sentences are true in M as in

119 Zilber (2010: 137). 120 Ben-Yaacov (2003). 121 See Baldwin (2009: 36), and his references
there. 122 Mycielski (1964). 123 Eklof and Fischer (1972) and Szmielew (1955). 124 Ershov
(1964).
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N.125 [See §2.4, Definition 2.4.] But it was only in 1950 that he claimed to have a
mathematical (as opposed to metamathematical) definition of this notion.126 His
definition went by cylindrifications and made no reference to sentences or formu-
las being satisfied in structures. In 1946 he had asked for ‘a theory of [elementary]
equivalence of algebras as deep as the notions of isomorphism, etc. now in use’.127

Model theorists evidently foundTarski’s cylindrical definition of ≡ unappealing,
and soon two other ‘mathematical’ characterisations of the notion appeared.

Ultraproducts

In 1955 Jerzy Łoś described a construction based on Cartesian products M =
Prodi∈INi of structures of some fixed signature L .128 An ultrafilter D on I (i.e.
a maximal filter on the powerset ℘(I)) is given. [See §13.2, Definition 13.3.] Each
relation symbol R of L is defined to hold of a tuple a of elements of M if and only
if the set

{i ∈ I : Rx is satisfied in Ni by the projection of a at Ni}
is in the ultrafilter D; and corresponding clauses hold for function and constant
symbols. Equality is read this way too, so that any two elements of the product are
identified if and only if the set of indices where they agree is in D. [See §13.c.] The
resulting structure is called an ultraproduct of the Ni , or an ultrapower if the Ni are
all equal. Łoś showed that if φ(x) is a first-order formula of signature L , and a
a tuple of elements of the product, then a satisfies φ(x) in the ultraproduct if and
only if the set of indices i at which the projection of a satisfies φ(x) in Ni is a set
in the ultrafilter; this is Łoś’s Theorem. [See §13.c, Theorem 13.22.] Łoś’s Theorem
was new, but it came to light that ultraproducts or their close relatives hadbeenused
earlier by Skolem,Hewitt, andArrow.129 Skolem’s applicationwasmodel-theoretic,
to build a structure elementarily equivalent to thenatural numberswith+ and×but
not isomorphic to them.

We remarked in §18.4 above that ultraproducts give a fast and efficient proof of
the Compactness Theorem. It can be done in several ways. For example let T be
a nonempty first-order theory such that every finite subset of T has a model. Let
I be the set of finite subsets of T, and for each i ∈ I let Ni be a model of i. For
each sentence φ ∈ T let Xφ be the set of finite subsets of T that contain φ. Then all
intersections of finitely many sets Xφ are nonempty, so there is an ultrafilter D on
I containing each Xφ . It follows at once by Łoś’ Theorem that the resulting ultra-
product is a model of T. [See §13.c, Corollary 13.23.]

By suitable choice of index set and ultrafilter one can ensure that ultraproducts
are κ-saturated, for any required κ. Keisler exploited this fact to show, with the

125 Tarski (1935b: Appendix). 126 Tarski (1952: 712). 127 Tarski (2000: 27). 128 Łoś (1955b).
129 Skolem (1931), Hewitt (1948), and Arrow (1950).
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help of the generalised continuum hypothesis, that two structures are elementarily
equivalent if and only if they have isomorphic ultrapowers.130 Ten years later Shelah
proved the same theorem without assuming the generalised continuum hypothe-
sis, and hence gave a ‘purely mathematical’ characterisation of elementary equiv-
alence.131 Kochen gave another characterisation of elementary equivalence, using
direct limits of ultrapowers.132

Thus it turnedout that ultraproductswereuseful largely becauseof their high sat-
uration. Since there are other ways of getting highly saturated models of a theory,
this made ultraproducts one of the less essential tools of model theory—though
some model theorists keep them on hand as a concrete and transparent construc-
tion. There are also a few important theorems for which ultraproducts give the
only known reasonable proofs; one is Keisler’s theorem that uncountably categor-
ical theories fail to have the finite cover property.133 But they never achieved in
model theory the central role that they came to play in set theory, thanks to Scott.134

Back-and-forth equivalence

Fraïssé found another way of characterising elementary equivalence without men-
tioning formulas. He described a hierarchy of interrelated families of partial iso-
morphisms between structures.135 In terms of this hierarchy he gave necessary and
sufficient conditions for two relational structures to agree in all prenex first-order
sentences with at most n alternations of quantifier, where n is any natural number.
So M ≡ N if M and N agree in this sense for all finite n. Fraïssé’s paper was unfor-
tunately hard to read, and his ideas became known through a paper of Ehrenfeucht
who recast them in terms of games.136 Soon afterwards they were rediscovered by
the Kazakh mathematician Asan Taimanov.137

In Ehrenfeucht’s version, two players play a game to compare two structures M
and N. The players alternate; in each step, the first player chooses an element of
one structure and the second player then chooses an element of the other structure.
The second player loses as soon as the elements chosen fromone structure satisfy a
quantifier-free formula not satisfied by the corresponding elements from the other
structure. (Mention of formulas here is easily eliminated.) This is the Ehrenfeucht-
Fraïssé back-and-forth game on the two structures. For a first-order language with
finitely many relation and individual constant symbols and no function symbols,
one could show that M and N agree in all sentences of quantifier rank at most k if
and only if the second player has a strategy that keeps her alive for at least k steps.
[See §16.6.] Hence M is elementarily equivalent to N if and only if for each finite
k, the second player can guarantee not to lose in the first k steps.

130 Keisler (1961). 131 Shelah (1971a). 132 Kochen (1961). 133 Keisler (1967). 134 Scott
(1961). 135 Fraïssé (1956). 136 Ehrenfeucht (1960/1961). 137 Taimanov (1962).
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With this equipment it is very easy to show, for example, that if G,G′ are ele-
mentarily equivalent groups and H,H′ are elementarily equivalent groups, then
the product group G ×H is elementarily equivalent to G′ ×H′.

The beauty of this idea of Fraïssé and Ehrenfeucht was that nothing tied it to
first-order logic. Ehrenfeucht himself used it to prove the equivalence of various
ordinal numbers as ordered sets with predicates for + and ×, in a language with a
second-order quantifier ranging over finite sets.138 Carol Karp adapted it to infini-
tary logics,139 and it reappeared in Chen Chung Chang’s construction of Scott sen-
tences.140 [See §16.6 Theorem 16.4.] Today, theoretical computer scientists know it
in a thousand different forms.

We turn to applications of all this machinery. One striking application of ele-
mentary equivalence was Abraham Robinson’s creation of nonstandard analysis in
1961.141 [See Chapter 4.] He used the Compactness Theorem to form an elemen-
tary extension ∗Rof the fieldRof real numbers (with any further relations attached)
containing infinitesimal elements. He noted that if a theoremof real analysis can be
written as a first-order sentence φ, then toprove φ it suffices touse the infinitesimals
to show that φ is true in ∗R (a typical example of what Robinson called a transfer
argument).

James Ax and Kochen in 1965/6 used the new model-theoretic methods to find a
complete set of axioms for the field of p-adic numbers (uniformly for any prime
p).142 Their approach was completely different from the method of quantifier
elimination, and it seems likely that any proof by that method would have been
hopelessly unwieldy. Instead they considered saturated valued fields of cardinality
ω1. Using algebraic and number-theoretic arguments, Ax and Kochen were able
to show that under certain conditions, any two such fields are isomorphic. They
then wrote down these conditions as a first-order theory T. Assuming the gener-
alised continuum hypothesis, any two countable models M,N of T have saturated
elementary extensions of cardinality ω1, which are isomorphic, so that M and N
must be elementarily equivalent. This proves the completeness ofT (and hence its
decidability since the axioms are effectively enumerable); a similar argument us-
ing saturated structures shows thatT is model-complete, and onemore push shows
that the theory admits elimination of quantifiers. There are various tricks that one
can use to eliminate the generalised continuum hypothesis.

Thiswork ofAx andKochen, togetherwith very similar but independentwork of
Yuri Ershov,143 marked the beginning of a long line of research in the model theory
of fields with extra structure (for example with valuations or automorphisms). But
it hit the headlines because it gave a proof of an ‘almost everywhere’ version of a

138 Ehrenfeucht (1960/1961). 139 Karp (1965). 140 Chang (1968). 141 A. Robinson (1961).
142 Ax and Kochen (1965a,b, 1966). 143 Ershov (1965).
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conjecture of Emil Artin on c2 fields. Since counterexamples to the full conjecture
appeared shortly afterwards, ‘almost everywhere’ was about as much as one could
hope for, short of an explicit list of the exceptions.

A notion different from elementary equivalence, but somewhere in the same ball-
park, is as follows. Suppose F is a class of mappings between structures, and φ(x) a
formula. We say thatFpreserves φ(x) if the following holds: whenever f : M #→ N
is a mapping in F and a is a tuple of elements satisfying φ(x) in M, then f(a) satisfies
φ(x) in N. A preservation theorem is a theorem characterising, for some class F of
mappings, the class of formulas that are preservedbyF. For example theŁoś–Tarski
Theorem can be paraphrased as characterising the class of formulas preserved by
embeddings between models of a given theory.144

Stretching the definition above a little, we say that a formula φ(x) is preserved in
unions of chainswhen for every chain (Mi : i < β) of structures with unionMβ and
every tuple a of elements of M0, if a satisfies φ(x) in Mi for each i < β then it also
satisfies φ(x) in Mβ . Chang and Łoś and Suszko showed that a first-order formula
φ(x) is preserved in unions of chains if and only if it is logically equivalent to a for-
mula of the form∀y1…∀ym∃z1…∃znψ where ψ has no quantifiers (such formulas
are called ∀2 formulas, or Π2 formulas).145 In the case where φ is a sentence (no
free variables), the main thing to be proved is that if Θ is the set of all∀2 sentences
θ that are consequences of φ, then every model of Θ is elementarily equivalent to
the union of a chain ofmodels of φ (and hence is amodel of φ). This can be proved
by building up a chain whose even-numbered members form an elementary chain
of models of Θ, and whose odd-numbered members are models of φ.

The model-building techniques of the previous section were honed on this and
many similar problems. The text of Chang and Keisler, first published in 1973, is a
compendium of the main achievements of model theory up to that date.146

It was natural to ask how far the results of this section could be generalised to other
languages; in the 1950s and 1960s this usually meant languages with infinitary fea-
tures or generalised quantifiers. When someone had introduced a technique for
first-order languages, he or she could move on to testing the same technique on
stronger and stronger languages. Often a variant of the technique would still work,
but set theoretic assumptions and arguments would begin to appear. An observa-
tion of William Hanf helped to organise this area: he noted that for any reasonable
language L there is a least cardinal κ (which became known as the Hanf number of
L) such that if a sentence of L has a model of cardinality at least κ then it has ar-
bitrarily large models.147 A great deal of work and ingenuity went into finding the
Hanf numbers of a range of languages.

144 Tarski (1954) and Łoś (1955a). 145 Chang (1959) and Łoś and Suszko (1957). 146 Chang and
Keisler (1990). 147 Hanf (1960).
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One effect of this trend was that during the period from 1950–70 the centre of
gravity of research moved away from first-order languages and towards infinitary
languages, bringing a heady dose of set theory into the subject. Allowme two anec-
dotes. In about 1970 a Polish logician reported that a senior colleague of his had
advised himnot to publish a textbook on first-ordermodel theory, because the sub-
ject was dead. And in 1966David Park, who had just completed a PhD in first-order
model theorywithHartleyRogers atMIT, visited the research group inOxford and
urged us to get out of first-ordermodel theory because it no longer had any interest-
ing questions. (Shortly afterwards he set up in computer science, where he applied
back-and-forth methods.)

18.7 Categoricity and classification theory
In 1959, Lars Svenonius showed that among countable structures, the models of
ω-categorical theories are precisely those structures whose automorphism group
has finitely many orbits of n-element sets, for each finite n.148 Permutation groups
with this property are said to be oligomorphic.149 Other model theorists gave other
characterisations of ω-categoricity.150

Łoś asked: If T is a complete theory in a countable first-order language, and T
is λ-categorical for some uncountable λ, then is T also λ-categorical for every un-
countable λ?151 [See §17.3.] With hindsight we can see that this was an extraor-
dinarily fortunate question to have asked in 1955, for two main reasons. The first
was that at just this date the tools for starting to answer the question were becom-
ing available. If T is λ-categorical and M, N are models of T of cardinality λ which
are respectively highly saturated and Ehrenfeucht–Mostowski, then M and N are
isomorphic and we deduce that models of T of cardinality λ have very few types to
realise. This is strong information. Thus Łoś’s question ‘stimulated quite a bit of
the work concerning models of arbitrary complete theories’.152

Second, Łoś’s question was unusual in that it called for a description of all the
uncountable models of a theory. The answer would involve finding a structure the-
orem to explain how anymodel of the theory is put together. This pointed in a very
different direction from Tarski’s ‘mutual relations between sentences of formalised
theories and mathematical systems in which these sentences hold’.153 One mark
of the change of focus was that expressions like ‘uncountably categorical’ (i.e. λ-
categorical for all uncountable λ) and ‘totally categorical’ (i.e. λ-categorical for all
infinite λ), which originally applied to theories, came to be used chiefly for models
of those theories. For example Walter Baur wrote of ‘ℵ0-categorical modules’.154

148 Svenonius (1959). 149 Cf. Cameron (1990). 150 Notably Ryll-Nardzewski (1959). 151 Łoś
(1954). 152 Vaught (1963). 153 Tarski (1954). 154 Baur (1975).
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In 1965, Michael Morley answered Łoś’s question in the affirmative; this is Mor-
ley’s Theorem.155 [See §17.3, Theorem 17.3.] Amid all the literature of model theory,
Morley’s paper standsout for its clarity, its elegance and its richness inoriginal ideas.
Morley’s central innovation was Morley rank, which assigns an ordinal rank to each
definable relation in any model of a theory T which is λ-categorical for some un-
countable λ. (InMorley’s presentation the rankwas assigned to complete types, but
later workers generally used the induced rank on formulas or definable relations.)
Morley gave the name totally transcendental to theories that assign aMorley rank to
all definable relations in their models; the terminology came from transcendental
extensions in field theory. Morley conjectured that theMorley rankof anyuncount-
ably categorical structure (i.e. theMorley rank of the formula x = x) is always finite;
this was proved soon afterwards by Baldwin and Zilber independently.156 (As a
special case, the Morley rank of an algebraic set over an algebraically closed field is
equal to its Krull dimension and hence is finite.)

Baldwin and Lachlan reworked and strengthened Morley’s results.157 [See §17.3,
Theorem 17.6.] Building on the unpublished dissertation ofWilliamMarsh,158 they
showed that each model of an uncountably categorical theory carries a definable
strongly minimal set with an abstract dependence relation that defines a dimension
for the model. Once the strongly minimal set is given, the rest of the model is as-
sembled around it in a way that is unique up to isomorphism. They also showed
that the number of countablemodels of such a theory, up to isomorphism, is either
1 or ω. [See §17.2.]

A few young researchers set to work to extend Morley’s result to uncountable
first-order languages. One of themwas Frederick Rowbottom, who introduced the
name ‘λ-stable’ for theories with at most λ types over sets of λ elements;159 hence
the name stability theory for this general area.

In 1969, Saharon Shelah began to publish in stability theory.160 With his
formidable theorem-proving skill, he reshaped the subject almost from the start
(and some othermodel theorists fled from the field rather than competewith him).
By 1971 he had proved the uncountable analogue ofMorley’s Theorem.161 Butmore
important, he had formulated a plan of action for classifying complete theories.

Ehrenfeucht had already noticed that a theorywhich defines an infinite linear or-
dering on n-tuples of elements must have a large number of non-isomorphic mod-
els of the same cardinality.162 Shelah saw this result as marking a division between
‘good’ theories that have fewmodels of the same cardinality, and ‘bad’ theories that
have many. Shelah’s strategy was to hunt for possible bad features that a theory
might have (like defining an infinite linear ordering), until the list was so compre-
hensive that a theory without any of these features is pinned down to the point

155 Morley (1965a). 156 Baldwin (1973) and Zilber (1974). 157 Baldwin and Lachlan (1971).
158 Marsh (1966). 159 Rowbottom (1964). 160 Shelah (1969). 161 Shelah (1974a).
162 Ehrenfeucht (1960/1961).
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where we can list all of its models in a structure theorem. [See §17.2.] As Shelah
once explained it in conversation, the outcome should be to show that wheneverK
is the class of all models of a complete first-order theory, ‘ifK is good, it is very very
good, but ifK is bad it is horrid’. Shelah coined the word nonstructure for the horrid
case, and he suggested several definitions of nonstructure.163 In one definition, a
nonstructure theorem finds a family of 2λ models of cardinality λ, none of which is
elementarily embeddable in any other. In another definition, a nonstructure theo-
rem finds two nonisomorphic models of cardinality λ that are indistinguishable by
strong infinitary languages.

Pursuing this planned dichotomy, Shelah wrote some dozens of papers and one
large and famouslydifficult book.164 Shelahalsowrote anumberof papersonanalo-
gous dichotomies for infinitary theories or abstract classes of structures.165 His own
name for this area of research was classification theory. The name applies at two lev-
els: first-order theories classify structures, and Shelah’s theory classifies first-order
theories.

Shelah himself sometimes suggested that his main interests lay on the nonstruc-
ture side:

I was attracted to mathematics by its generality, its ability to give information where ap-
parently total chaos prevails, rather than by its ability to give much concrete and exact
information where we a priori know a great deal.166

We should be careful not to deduce too much from this. Shelah’s own work on the
‘good’ side vastly expanded the range of the new tools introduced by Morley. Also
it gradually came to light, againmainly through Shelah’s ownwork, that there is not
just one dichotomy between good and bad theories; there are many good/bad di-
chotomies, and they partition the world of complete first-order theories in a com-
plicated pattern. Generally speaking, each dichotomy is defined by the fact that
models of theories on the bad side of it have some combinatorial property.167

It seemed at first that a minimal requirement for any good structure theory was
that the theory should be stable, i.e. λ-stable for some cardinal λ. For stable theories,
Shelah introduced a notion of relative dependence called forking, which reduced to
linear or algebraic dependence in classical structures. In terms of forking he defined
a class of typeswhich he called regular, which carry a dependence relation that gives
a cardinal dimension to the set of elements realising them. By the late 1980s it was
becoming clear that much of the resulting machinery still worked in theories that
were not stable. For example forking still behaved well in a larger class of theories
that Shelah had introduced under the name simple.168

163 Shelah (1985). 164 Shelah (1978); the second edition in 1990 reports the successful completion of
the programme for countable first-order theories in 1982. 165 E.g. Shelah (1978). 166 Shelah (1987b:
154). 167 At the time of writing, Gabriel Conant has a web page with a map of the main dichotomies:
http://www.forkinganddividing.com. 168 Shelah (1980) and Kim (1998).
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In stable theories any complete type is in a certain sense ‘definable’ by first-order
formulas.169 Shelah showed that the definition can always be taken over a canonical
base which is a family of ‘imaginary’ elements of the model. A special case of his
construction is André Weil’s field of definition of a variety,170 except that here the
field of definition consists of ordinary elements, not imaginary ones. Bruno Poizat
explained this in 1985 by showing that algebraically closed fields have elimination of
imaginaries, in the sense that their genuine elements can stand in for their imaginary
ones.171

Stable groups turned out to have an unexpectedly large amount of structure,
much of which carried over to modules (which are always stable). Poizat created
a rich theory of stable groups by generalising ideas from Baldwin and Jan Saxl, Zil-
ber, and Cherlin and Shelah.172 Poizat’s framework allows one to rely on intuitions
from algebraic geometry in handling stable groups; for example their behaviour is
strongly influenced by their generic elements.

One response to thework ofMorley and Shelahwas to askwhat their classifications
meant in concrete mathematical situations. The result was a series of papers deter-
mining what structures in various natural classes were categorical, totally transcen-
dental and so forth. The first nontrivial paper of this kindwas by JosephRosenstein
on ω-categorical linear orderings.173 But certainly the most influential was a paper
of Macintyre, where he showed that an infinite field is totally transcendental if and
only if it is algebraically closed.174

Cherlin and Shelah showed that every superstable skew field is an algebraically
closed field.175 In the course of this and related work, both Zilber and Cherlin in-
dependently noticed that a group definable in an uncountably categorical structure
has many of the typical features of an algebraic group; in Russia the group theo-
ristsVladimirRemeslennikov andAlexandreBorovikwerehaving similar thoughts.
Cherlin conjectured that every totally transcendental simple group is up to isomor-
phism an algebraic group over an algebraically closed field.176 This became known
as Cherlin’s Conjecture. It was an invitation to model theorists to blend their tech-
niques with those of the classification of finite simple groups. In 2008 Tuna Altınel,
Borovik, and Cherlin published a report on the substantial results achieved.177

In the preface to that work, the authors wisely comment:

[…]much of the history of pure model theory, which underwent a revolution beginning
in the late sixties, and even (or perhaps, particularly) for those who lived through much
of the latter, is not easy to reconstruct in a balanced way.178

169 Shelah (1971b), and independently Lachlan (1972). 170 Weil (1946: 68). 171 Poizat (1985:
§16e). 172 Poizat (1985); cf. Baldwin and Saxl (1976), Zilber (1977), and Cherlin and Shelah (1980).

173 Rosenstein (1969). 174 Macintyre (1971). 175 Cherlin and Shelah (1980). 176 Cherlin
(1979). 177 Altınel et al. (2008). 178 Altınel et al. (2008: xvii).
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This is awarning to readers of the three sectionsbelow. Theseparts ofmodel theory
are still on the move. I have recorded events and discoveries as I learned of them at
the time, but future historians will be much better placed to distinguish the chassis
from the bumper stickers.

18.8 Geometric model theory
Geometric model theory classifies structures in terms of their combinatorial ge-
ometries and the groups and fields that are interpretable in the structures. The roots
of this theory go back to work of Lachlan, Cherlin, and above all Zilber in stability
theory in the 1970s, and for this reason the theory is also known as geometric stability
theory.179 But by the early 1990s it emerged that the same ideas sometimes worked
well in structures that were by no means stable.

An abstract dependence relation gives rise to a combinatorial geometry—in
what follows I say just ‘geometry’. In this geometry certain sets of points are closed,
i.e. they contain all points dependent on them. Zilber classified geometries into
three classes:180 (a) trivialor degenerate, where all sets of points are closed; (b) non-
trivial locallymodular, which are not trivial but if a finite number of points are fixed
(i.e. made dependent on the empty set), then the resulting lattice is modular—for
brevity this case is often called modular; (c) the remainder, known briefly as non-
modular. Classical examples are: for (a), the dependence relationwhere an element
is dependent only on sets containing it; for (b), linear dependence in a vector space;
for (c), algebraic dependence in an algebraically closed field.

This classification made its way into model theory rather indirectly. Zilber was
working on a proof that no complete totally categorical theory is finitely axioma-
tisable. (His first announcement of his proof of this result in 1980 was flawed by a
writing-up error which was later repaired.)181 In work on ω-categorical stable the-
ories, Lachlan had introduced a combinatorial structure which he called a pseudo-
plane.182 A key step in Zilber’s argument was to show that no totally categorical
structure contains a definable pseudoplane. From this he deduced that the geome-
try of the stronglyminimal setmust be either trivial ormodular, and hismain result
followed in turn from this. Cherlin, on reading Zilber’s 1980-paper and seeing the
error, went to the classification of finite simple groups and proved directly that the
strongly minimal set must be either trivial or modular.183 This result has a purely
group-theoretic formulation. In fact several people discovered it independently,
and it became known as the Cherlin–Mills–Zilber Theorem in honour of three of
them. Zilber’s proof, which avoids the error mentioned above, reaches the result
without the classification of finite simple groups.

179 As in the title of Pillay (1996). 180 Zilber (1981). 181 Zilber (1980), and
then Zilber (1993). 182 Lachlan (1973/74). 183 Cherlin, Harrington, et al. (1985).
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Zilber also called attention to the following combinatorial configuration:184

which occurs in modular strongly minimal sets. (The blobs are points of the ge-
ometry. All points are pairwise independent. A line between three points means
they form a dependent set.) He showed how to construct a group from the con-
figuration; but since this was in the middle of an argument by reductio ad absur-
dum and quite strong assumptions were in force, it was less than the definitive re-
sult. Hrushovski looked closer and showed, using Zilber’s configuration, that ev-
ery modular regular type has an infinite group interpretable in it (in a generalised
sense).185

When Baldwin and Lachlan had shown that every uncountably categorical struc-
ture consists of a strongly minimal set D and other elements attached around it,
they found they needed to say something about the way these other elements are
attached.186 Because of categoricity, something in the theory has to prevent the set
of attached elements being larger thanD. The simplest guess would be that each at-
tached element has to satisfy an algebraic formula (i.e. one satisfied by only finitely
many elements) with parameters in D. Baldwin and Lachlan finished their paper
with a complicated example to show that this need not hold. Later Baldwin realised
that an easy example was already to hand: a direct sum G of countably many cyclic
groups of order p2 for a prime p. The socle (the set of elements of order at most p)
is strongly minimal, in fact a vector space over the p-element field. An element a of
order p2 is described by saying what pa is; but if b is any element of the socle then
some automorphism of G fixes the socle pointwise and takes a to a + b. In fact the
orbit of a over the socle is parametrised by elements of the socle. This parametrisa-
tion keeps the orbit from having cardinality greater than that of the socle.

Zilber realised that this was a common pattern in uncountably categorical struc-
tures.187 Each such structure is a finite tower; at the bottom is a strongly minimal
set, and as we go up the tower, the orbit of an element over the preceding level
in the tower is always parametrised by some group interpretable in that preced-
ing level. He called these groups binding groups. There are some cohomological

184 Zilber (1984a: Lemma 3.3). 185 Hrushovski (1987). 186 Baldwin and Lachlan (1971).
187 Zilber (1993).
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constraints, which allowed Ahlbrandt and Ziegler to begin cataloguing the possi-
bilities.188 Cherlin and Hrushovski, drawing on these ideas of Zilber and work of
Lachlan, proved deep classification results on families of finite structures.189

In the light of Zilber’s work on uncountable categoricity and its extension by Cher-
lin,Harrington, andLachlan,190 model theorists looked to seewhat other structures
might have modular geometries. One particularly influential result was proved in-
dependently by Hrushovski and Pillay, and published jointly:191 a group G is mod-
ular (i.e. has only modular or trivial geometries) if and only if for each finite n, all
definable subsets ofGn are Boolean combinations of cosets of definable subgroups.

We saw that Zilber first applied his trichotomy of geometries by showing that in
the particular structures he was considering, the non-modular case never occurred.
Zilber now proposed to apply the same trichotomy to another question, namely
whether every simple group interpretable in an uncountably categorical structure
must be an algebraic group over an algebraically closed field. (Cf. Cherlin’s Conjec-
ture above.) Algebraically closed fields themselves have non-modular geometry; at
the 1984 International Congress Zilber conjectured the converse, viz. that any un-
countably categorical structure with non-modular geometrymust be—up to inter-
pretability both ways—an algebraically closed field.192 This was known as Zilber’s
Conjecture. [See §17.3.]

A word about Zilber’s motivation may be in order. Macintyre said in 1988 that
‘Purely logical classification[s] give only the most superficial general information’
(and attributed the point to Georg Kreisel).193 Zilber was convinced that the op-
positemust be true: if classical mathematics rightly recognises certain structures as
‘good’, then it should be possible to say in purelymodel-theoretic termswhatmakes
these structures good. In fact Zilber in conversation quoted Macintyre (1971) as
an example of how a purely model-theoretic condition (total transcendence) can
be a criterion for an algebraic property (algebraic closure). Zilber was also con-
vinced that being a model of an uncountably categorical countable first-order the-
ory is an extremely strong property with rich mathematical consequences, among
them strong homogeneity and the existence of a definable dimension.

In 1988 Hrushovski refuted Zilber’s Conjecture using an ingenious variant of
Fraïssé’s construction from §18.4 above.194 But for both Zilber andHrushovski this
meant only that the right condition hadn’t yet been found. Since it seemed to be
particularly hard to recover the Zariski topology from purely model-theoretic data,
a possible next step was to axiomatise the Zariski topology. This is not straight-
forward: it has to be done in all finite dimensions simultaneously, since the closed
sets in dimension n don’t determine those in dimension n + 1. But Hrushovski de-

188 Ahlbrandt and Ziegler (1991). 189 Cherlin andHrushovski (2003). 190 Cherlin, Harrington,
et al. (1985). 191 Hrushovski and Pillay (1987). 192 Zilber (1984b). 193 Macintyre (1989).

194 Hrushovski (1993).
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scribed a set of axioms, and Zilber and Hrushovski found that, by putting together
what they knew, they could prove that Zilber’s Conjecture holds for models of the
axioms.195

Hrushovski proved, for the first time, the geometric Mordell–Lang Conjecture
in all characteristics.196 Key ingredients of his argument were the results on the
Zariski topology and on weakly normal groups, and earlier results on the stability
of separably closed fields and differentiably closed fields. Hrushovski went on to
apply a similar treatment to the Manin–Mumford Conjecture.197 This case was a
little different: the structures in question were unstable. But Hrushovski showed
that they inherited enough stability from a surrounding algebraically closed field;
and in any case they were ‘simple’ in Shelah’s classification.

18.9 Other languages
In 1885 Charles Peirce, fresh from inventing quantifiers, mentioned that the uni-
versal and the existential quantifier are not the only examples.198 He gave the ex-
ample of the quantifier ‘For two-thirds of all x’. Unfortunately, nobody picked up
Peirce’s idea, untilMostowksi called attention to the quantifiers ‘For at leastℵα x’.199

Mostowski’s paper was timely, because it was useful to have in the 1960s a variety of
extensions of first-order logic for testing out new constructions. [See Chapter 16.]

Lindström 1969was another timely paper, inwhich he gavemodel-theoretic nec-
essary and sufficient conditions for a logic to have the same expressive power as
first-order logic. His result suggested that it might be possible to fit the various
logics studied during the previous decade into some higher organisation of logics,
within a generalised (or abstract) model theory. Alas, the facts weren’t there to sup-
port such a theory. The 1970s saw some valiant efforts in this direction, and by the
mid-1980s a large amount was known about many different logics extending first-
order logic.200 But the most quotable outcome was that very few logics apart from
first-order logic satisfy a Craig Interpolation Theorem.

Themathematical logicians within computer science shrugged their shoulders and
askedwhat is the interest of a logic in which it is impossible to express everyday no-
tions like connectedness, even on finite structures. Thus, for example, Yuri Gure-
vich:

The question arises how good is first-order logic in handling finite structures. It was not
designed to deal exclusively with finite structures. […] One would like to enrich first-
order logic so that the enriched logic fits better the case of finite structures.201

195 Hrushovski and Zilber (1996). For details see Zilber (2010: Appendix B.2). 196 Hrushovski
(1996). 197 Hrushovski (2001). 198 Peirce (1885). 199 Mostowski (1957). 200 See Barwise
and Feferman (1985). 201 Gurevich (1984).
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One solutionwas first-order logicwith a fixed-point operator added, as proposedby
AshokChandra andDavidHarel.202 Themodel theory of this logic and its relatives
were studiedmostly by computer scientists, but this seems to be purely an accident
of history; these languages would have been good to have available in the 1960s.

Also of interest to computer scientists were languages with only a finite num-
ber of variables. Michael Mortimer launched the topic by showing that in a signa-
ture with no function symbols, any consistent first-order sentence using at most
two variables has a finite model.203 Barwise and, independently, Neil Immerman
showed how tomodify Ehrenfeucht-Fraïssé games to languages with atmost n vari-
ables;204 Immerman called the result pebble games.

Tarski, in his truth definitions, had taken universal and existential quantification
to be dual to each other. This was at variance with a tradition running from Aris-
totelian logic up tomodern formal linguistics, according to which existential quan-
tifiers should be read as disguised Skolem functions.205 Henkin and Jaakko Hin-
tikka (with the collaboration of Gabriel Sandu) brought this tradition into model
theory.206 These authors noted that by suppressing some of the arguments of the
Skolem functions we can increase the expressive power of the language, so as to ex-
press independence of one variable from another (as in Henkin’s branching quanti-
fiers).207 They also noted that the Skolem functions can be read as strategies for the
player∃ in a semantic game between players∀ and∃ that can be used to give a truth
definition for sentences; the suppressed arguments correspond to places where the
information available to ∃ in the game is imperfect.

For model theory a difficulty was that the Skolem function approach to exis-
tential quantifiers made it impossible to give a sensible interpretation of subfor-
mulas within the scope of an existential quantifier. This problem was resolved by
Hodges,208 who replaced the notion ‘tuple a satisfies φ(x) in M’ by the notion
‘the set a, b,… of tuples satisfies φ(x) inM’, thus introducing what Väänänen later
called team semantics. Peter van Emde Boas noticed that some of the conditions
in Hodges’ truth definition were identical to conditions appearing in the study of
database dependencies. This point was taken up by Väänänen and his colleagues in
Helsinki, to develop a model theory of teams, with hopes of using it to bring logic
to bear on questions in database theory, statistics, and quantum theory.209

202 Chandra andHarel (1980). 203 Mortimer (1975). 204 Barwise (1977) and Immerman (1982).
205 See the references in Hodges (2015). 206 Henkin (1961) and Hintikka (1996). 207 See also

Blass and Gurevich (1986). 208 Hodges (1997b). 209 Abramsky et al. (2016).
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18.10 Model theory within mathematics
In their addresses to the 1950 International Congress of Mathematicians at Har-
vard and MIT, both Abraham Robinson and Tarski expressed the hope that the
new subject of model theory—for which neither of them had a name yet—would
contribute to algebra and beyond:

[…] contemporary symbolic logic can produce useful tools—though by no means om-
nipotent ones—for the development of actual mathematics, more particularly for the de-
velopment of algebra and, it would appear, algebraic geometry.210

[Model theory has applications] which may be of general interest to mathematicians and
especially to algebraists; in some of these applications the notions of [model theory] itself
are not involved at all.211

Compare these remarks with the comment of Ludwig Faddeev, an observer on the
sidelines, in the closing ceremonyof the 2002 InternationalCongress ofMathemati-
cians at Beijing:

Take for instance the sections of logic, number theory and algebra. The general underlin-
ing mathematical structures as well as language, used by speakers, were essentially iden-
tical.212

Job done, one might well say!

Model theory had grown fast. Already the Omega Group bibliography of model
theory in 1987 ran to 617 pages.213 By the mid-1980s there were too many dialects
of mathematical model theory for anybody to be expert in more than a fraction.
For example, very few model theorists could claim to understand both the work of
Zilber andHrushovski at the edge of algebraic geometry, and the studies by Immer-
man, Dawar, and other theoretical computer scientists on definable classes of finite
structures.

Right fromthebeginning,model theorists found themselves engagingwithother
areas of mathematics. In the period from 1950 –70 most of these interactions were
with set theory, not with algebra or number theory. From around 1970 there was
less interaction with axiomatic set theory. But recent years have seen an increasing
amount of discussion betweenmodel theory and descriptive set theory. For exam-
ple when it was realised that Fraïssé’s construction in §18.5 above had already been
applied by Pavel Urysohn to finite metric spaces with rational distances, the way
was open to apply ideas of topological dynamics to Fraïssé-type constructions, as
in Alexander Kechris, Vladimir Pestov, and Stevo Todorcevic.214

210 A. Robinson (1952: 694). 211 Tarski (1952: 717). 212 Li (2002: 35). 213 G. H. Müller
et al. (1987). 214 Urysohn (1927) and Kechris et al. (2005).
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The title of Kechris et al.’s paper mentions Ramsey’s Theorem, a reminder
that this combinatorial theorem was used in the 1950s to construct Ehrenfeucht–
Mostowski models. Links between model theory and combinatorics never ceased,
as witness the paper of Maryanthe Malliaris and Shelah relating Szemerédi’s Reg-
ularity Lemma to the structure theory of graphs stable in the model-theoretic
sense.215 Shelah’s book had a twenty-page Appendix of ‘the combinatorial theo-
rems needed in the book’.216

Wehave described above some of the interactions betweenmodel theory, algebraic
geometry and number theory, mostly before the year 2000. More recent years have
seen dramatic advances in this area, resting on the earlier work. One example is the
Pila–Wilkie Theorem, which applies o-minimality in order to bound the numbers of
rational points in various sets definable in the real numbers,217 building on earlier
work of Wilkie with o-minimal structures.

Another advance, also closely tied to earlier notions, is theworkofZlil Selawhich
gives apositive answer toTarski’s questionwhether all nonabelian finitely generated
free groups are elementarily equivalent.218 The proof ran through several papers
and involved building an analogue of diophantine geometry for such groups.219

These examples can serve as an indication that future historians of model theory
will have plenty of high quality material to write about.

18.11 Notes
Several model theory texts give more detailed historical information about partic-
ular theorems; for example Chang and Keisler 1990, Hodges 1993, and Pillay 1996.
Dawson 1993 and Lascar 1998 both overlap the present essay. There are surveys on
the model-theoretic work of Skolem by Hao Wang (Skolem 1970, 17–52) and on
that of Tarski in Vaught 1986.
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Everybody I ever encountered in model theory should be thanked for their
implicit contributions. But I tried to keep a note of those people who helped
with specific points in it, and the list is as follows: Zofia Adamowicz, Bektur
Baizhanov, John Baldwin, Oleg Belegradek, Tim Button, Greg Cherlin, John W.
Dawson, John Doner, Yuri Ershov, Solomon Feferman, Ivor Grattan-Guinness,
Marcel Guillaume, Angus Macintyre, Dugald Macpherson, Maria Panteki, Anand
Pillay, Gabriel Sabbagh, Hourya Sinaceur, Jouko Väänänen, Robert Vaught, Jan
Woleński, Carol Wood, Boris Zilber, Jan Zygmunt. Very probably other people
have slipped through the net—my apologies to them.


